Aufwinde entscheidend

Messcontainer des TROPOS während DACAPO-PESO in Punta Arenas, Chile
Foto PATRIC SEIFERT/TROPOS

Eine großangelegte Messreihe ermöglicht neue Einblicke in die Unterschiede zwischen Wolken der Nord- und Südhalbkugel. Die Ergebnisse sollen helfen, Klimamodelle zu optimieren.

26.01.2022 · News · Leibniz-Institut für Troposphärenforschung · Umweltwissenschaften · Forschungsergebnis

Wolken in der Südhemisphäre reflektieren mehr Sonnenlicht als in der Nordhemisphäre. Ursache ist das häufigere Vorkommen von Flüssigwassertropfen, das durch ein Zusammenspiel aus Aufwinden und einer saubereren Umgebung entsteht. In einer Studie im Fachjournal Atmospheric Chemistry and Physics fand ein Forscherteam unter Leitung des Leibniz-Instituts für Troposphärenforschung (TROPOS) einen unerwartet starken Einfluss der Aufwinde. Ermöglicht wurden die neuen Ergebnisse durch Langzeitmessungen in Leipzig (Deutschland), Limassol (Zypern) und Punta Arenas (Chile).

Die Messungen in Punta Arenas waren mit drei Jahren die längsten Wolkenuntersuchungen, die es bisher mit Lidar und Radar in den mittleren Breiten der Südhemisphäre gegeben hat. 2018 bis 2021 hatte ein Team der Universität Magallanes (UMAG), des TROPOS und der Universität Leipzig im Rahmen der Feldkampagne DACAPO-PESO umfangreiche Untersuchungen zu Aerosolen, Wolken, Wind und Niederschlag im äußersten Süden Chiles durchgeführt. In die Auswertung und den Vergleich flossen auch Daten der Feldkampagne CyCARE auf Zypern ein, an dem 2016 bis 2018 Forschende der Cyprus University of Technology und des ERATOSTHENES Centre of Excellence in Limassol beteiligt waren.

Hauptziel der Messungen in der weitgehend natürlichen Umgebung an der Südspitze Südamerikas war es, die Atmosphäre in der südlichen Hemisphäre zu untersuchen und mehr über die Wechselwirkungen zwischen Aerosolen und Wolken in einer Region zu erfahren, für die es bisher kaum Langzeitdaten gibt. Zu diesem Zweck hat das TROPOS 2018 die zwei Container des mobilen Atmosphärenobservatoriums LACROS auf dem Gelände der Universität in Punta Arenas installiert, die zusammen mit Geräten der Universität Leipzig und des Labors für Atmosphärenforschung der UMAG ein umfassendes Bild der Wolken vom Boden aus ergaben. Dafür wurden die in den zwei LACROS-Messcontainern installierten Fernerkundungsgeräte eingesetzt: Laser-gestützte Lichtradare (Lidars), Radare, Radiometer, Sonnenphotometer und andere. Ergänzt wurden diese Messungen durch Filterproben vom Cerro Mirador, einer Anhöhe 600 m oberhalb von Punta Arenas.

Ursprünglich sollten die Messungen als Beitrag zum „Jahr der Polarvorhersage in der Südhemisphäre“ (YOPP-SH) ein Jahr lang dauern. Aber aufgrund der weltweiten Corona-Pandemie und der daraus resultierenden Reisebeschränkungen wurden die Messungen um weitere zwei Jahre verlängert und erst Ende 2021 beendet. „Wissenschaftlich war diese Verzögerung ein Segen“, sagt Kevin Ohneiser, Doktorand am TROPOS. Denn in diese Zeitraum fiel der „Black Summer“ 2019/20 mit großen Waldbränden in Australien. Deren Rauch wurde mehr als 10.000 Kilometer über den Pazifik bis nach Südamerika transportiert und konnte dort bis zum Abschluss der Messungen Ende 2021 mit den Laser-gestützten Untersuchungen per Lidar bis in Höhen von 25 km beobachtet werden. Da die Luft im Süden Chiles ansonsten sehr sauber ist, fiel diese Art von Luftverschmutzung gleich auf und unterstreicht den globalen Einfluss der großen Waldbrände auf das Klima.

„Mit DACAPO-PESO haben wir eine Lücke gefüllt, die hinsichtlich der Messungen auf der südlichen Hemisphäre lange bestand. Die Daten können jetzt dazu beitragen, aktuelle Klimamodelle zu verbessern“, erklärt Dr. Boris Barja von der UMAG, der vor Ort entscheidend dazu beigetragen hat, dass die Geräte trotz der coronabedingten Reiseeinschränkungen durchgehend in Betrieb sein konnten.

Mit bisher über 10 Nachfolgeprojekten, 20 Konferenzbeiträgen und 10 Fachpublikationen war das Projekt wissenschaftlich sehr erfolgreich. Weitere Fachartikel sind in Arbeit: So entwickelt Teresa Vogl von der Universität Leipzig zurzeit ein auf maschinellem Lernen basierendes Verfahren, um Anhand von Wolkenradar-Beobachtungen die Bildung von Niederschlag besser verstehen zu können.

Die nun abgeschlossene Kernaufgabe des Projektes war es jedoch, herauszufinden, ob und welche Unterschiede es bei vergleichbaren meteorologischen Bedingungen in den Wolken über Leipzig, Limassol und Punta Arenas gibt und worin diese begründet sind. Dabei liegen Leipzig und Punta Arenas etwa auf dem gleichen Breitengrad, aber in unterschiedlichen Hemisphären der Erde. Auch wenn das Klima und die bodennahen Wolkenschichten grundsätzlich mit dem Norden Europas vergleichbar sind, die mittelhohen und hohen Wolken unterscheiden sich deutlich voneinander. Das liegt daran, dass ein wesentlich größerer Teil der Südhalbkugel von Ozeanen bedeckt ist und dort viel weniger Menschen leben als auf der Nordhalbkugel. Die Atmosphäre oberhalb der bodennächsten Luftschichten auf der Südhalbkugel ist daher spürbar sauberer und enthält weniger Aerosol-Partikel, was sich bei der Wolkenbildung bemerkbar macht. „Weniger Partikel bedeuten weniger Eiskeime in der Atmosphäre. Aber genau diese werden benötigt, um bei Temperaturen zwischen 0 und -40°C Wolkentropfen zu Eiskristallen gefrieren zu lassen. Die Wolken vereisen in den mittleren Breiten der Südhemisphäre deshalb viel weniger und enthalten bei gleichen Temperaturen mehr flüssiges Wasser. Damit beeinflussen sie das einfallende Sonnenlicht und auch die von der Erdoberfläche ausgestrahlte Wärmestrahlung anders als im Norden. Das ist eine Erklärung, weshalb globale Klimamodelle die Strahlungsbilanz der Südhalbkugel immer noch nicht ausreichend genau abbilden können“, fasst Dr. Patric Seifert vom TROPOS zusammen. Im Temperaturbereich zwischen -24 und -8°C bildeten die Wolken über Punta Arenas aus Mangel an Eiskeimen im Durchschnitt 10 bis 40 Prozent weniger oft Eis als die Wolken über Leipzig. Auch die von den Flüssigwasserwolken produzierte Eismasse ist um mindestens einen Faktor 2 reduziert.

Jedoch sind die Unterschiede in der Luftqualität entgegen der weitläufigen Meinung nicht die einzige Ursache für die beobachteten Kontraste. Bei den Untersuchungen im Süden Chiles zeigte sich, dass die Wolken häufig durch Schwerewellen beeinflusst werden. Der starke Westwind vom Pazifik prallt auf das Andengebirge, wird auf der Rückseite verwirbelt und erzeugt diese Schwerewellen. „Durch Messungen der für die Wellen charakteristischen Auf- und Abwinde konnten wir Wolken, die von diesen Wellen beeinflusst worden sind, erkennen und aus der Gesamtstatistik herausfiltern. Dadurch konnten wir zeigen, dass diese Schwerewellen und nicht der Mangel an Eiskeimen für den Überschuss an Wolkentropfen bei Temperaturen unterhalb von -25°C hauptverantwortlich sind“, erklärt Dr. Martin Radenz vom TROPOS, der sich im Rahmen seiner Doktorarbeit intensiv mit diesem Thema befasst hat. „Ob dieses Phänomen nur im Süden Chiles die Wolken beeinflusst, ist aber zurzeit noch unklar. Wie wichtig sind Schwerewellen für die Bildung von Wolken und Niederschlag in anderen Regionen des Südlichen Ozeans? Wie häufig treten Schwerewellen über dem offenen Ozean auf, der den größten Teil der Erdoberfläche zwischen 30 und 70 Grad Süd bedeckt und derzeit größtenteils nur von Satelliten erfasst wird? Weitere Messungen der Aufwinde in Wolken sind erforderlich, um die Rolle der Eiskeime bei dem offensichtlichen Überschuss an flüssigem Wasser in den Wolken der mittleren Breiten der Südhemisphäre weiter einzugrenzen. Wir wollen diese Fragen in naher Zukunft gemeinsam mit unseren Partnern auch an anderen Orten in der Südhemisphäre, wie der Antarktis und Neuseeland, und möglichst auch an Bord von Forschungsschiffen untersuchen. Denn vom Weltraum aus ist dies im Moment noch nicht möglich.“

Die beiden LACROS-Container werden Ende Januar am TROPOS in Leipzig zurück sein und dann für den nächsten Einsatz vorbereitet. Im Rahmen von ACTRIS-D, dem deutschen Beitrag zur europäischen Forschungsinfrastruktur für Aerosole, Wolken und Spurengase, werden dann drei neue Geräte zusätzlich integriert. Mit einem neuen Sonnenphotometer, Mikrowellenradiometer und 94-Ghz-Wolkenradar geht es im November zu Untersuchungen an künstlich erzeugten Eiswolken in die Schweizer Alpen.

Weitere Informationen und Kontakt

www.tropos.de